Fractions

> And

Decimals

Improper Fractions And Mixed Fractions

Converting An Improper Fraction To A Mixed Number

$\frac{\text { Numerator }}{\text { Denominator }} \rightarrow \quad$ Denominator $\begin{gathered}\text { Numerator } \\ \text { Remainder }\end{gathered} \quad \rightarrow \quad$ Wholes $\frac{\text { Remainder }}{\text { Denominator }}$
Example: Improper Fraction \(\begin{array}{lll}14

5 \& Divide $$
\begin{array}{c}5\)\begin{tabular}{|c}
\(\frac{2}{14}\) \\
-10
\end{tabular}\end{array}
$$$\quad 2 \frac{4}{5}\end{array}$

4

Converting A Mixed Number To An Improper Fraction

Wholes $\frac{\text { Numerator }}{\text { Denominator }}=\frac{\text { Denominator } \times \text { Wholes }+ \text { Numerator }}{\text { Denominator }}$

Example:
$2 \frac{4}{5}=\frac{5 \times 2+4}{5}=\frac{14}{5}$

Whether To Use A Mixed Number Or An Improper Fraction

When we are simplifying fractions with order of operations, it is most often better to have it as an improper fraction. When we graph an improper fraction, it is better to graph it as a mixed number.
We do not always have to convert an improper fraction to a mixed number. However, we should always reduce.

Simplifying
Graphing
$2 \frac{1}{3}+1 \frac{2}{5}=\frac{7}{3}+\frac{7}{5}=\frac{35}{15}+\frac{21}{15}=\frac{56}{15}$ OR $3 \frac{11}{15}$

20 MathVanMo

> Step-By-Step

Algorithms

Simplifying Roots

Steps For Simplifying Roots

1. Break the number inside the root into its prime factorization.

$$
3 \sqrt{150}=3 \sqrt{2 \bullet 3 \bullet 5 \bullet 5}
$$

2. For every two of the same factor you cross off on the inside of the root, put one of that factor on the outside of the root.

$$
3 \sqrt{150}=3 \cdot 5 \sqrt{2 \cdot 3 \cdot(5 \cdot 5)}
$$

3. Multiply together all numbers on the outside of the root. Multiply together all numbers on the inside of the root.

$$
3 \cdot 5 \sqrt{2 \cdot 3 \cdot(5 \cdot 5)}=15 \sqrt{6}
$$

NEVER MULTIPLY A NUMBER ON THE OUTSIDE OF THE ROOT WITH A NUMBER ON THE INSIDE OF THE ROOT

Steps For Multiplying Roots

1. Put all numbers outside together and put all numbers inside the roots under one root.

$$
3 \sqrt{20} \cdot 2 \sqrt{10}=3 \bullet 2 \sqrt{20 \bullet 10}
$$

2. Simplify the root.

$$
3 \cdot 2 \sqrt{20 \cdot 10}=3 \cdot 2 \sqrt{(2 \cdot 2) \cdot(5 \cdot 5) \cdot 2}=3 \cdot 2 \cdot 2 \cdot 5 \sqrt{2}
$$

3. Multiply any numbers outside the root together and multiply any numbers inside the root together. Never multiply numbers outside the root with numbers inside the root.

$$
3 \cdot 2 \cdot 2 \cdot 5 \sqrt{2}=60 \sqrt{2}
$$

MathManMo

Rules
of

Signed

Numbers

Negatives and Exponents

1. Negative Base To An Even Power Is Always Positive

$$
\begin{aligned}
& \left({ }^{-} 5\right)^{2} \\
& =(-5)\left({ }^{-} 5\right) \\
& ={ }^{+} 25
\end{aligned}
$$

2. Negative Base To An Odd Power Is Always Negative
$(-5)^{3}$
$=\left({ }^{-} 5\right)\left({ }^{-5} 5\right)\left({ }^{-} 5\right)$
$={ }^{-1} 125$
3. Positive Base Multiplied By A Negative Is Always Negative Whether The Exponent Is Even Or Odd

$$
\begin{array}{lll}
{ }^{-} 5^{2} & & { }^{-} 5^{3} \\
={ }^{-} 1\left({ }^{+} 5\right)\left({ }^{+} 5\right) & \text { OR } & ={ }^{-} 1\left({ }^{+} 5\right)\left({ }^{+} 5\right)\left({ }^{+} 5\right) \\
& ={ }^{-} 25 & \\
={ }^{-} 125
\end{array}
$$

Negative Exponents:

$$
5^{-2}=\frac{1}{5^{2}}=\frac{1}{25} \text { and } \frac{1}{5^{-2}}=\frac{5^{2}}{1}=25
$$

Roots and Negatives

1. Even roots of negative numbers do not exist in set of real numbers (they are imaginary).
$\sqrt{-4}$

$=$ No Real Answer | $\left[\begin{array}{l}(+2)(+2) \\ \neq-4 \\ \text { AND } \\ (-2)(-2) \\ { }^{-}-4\end{array}\right.$ |
| :--- |

Imaginary Numbers

$$
\begin{aligned}
& i^{2}={ }^{-} 1 \rightarrow \sqrt{{ }^{-1}}=\sqrt{i^{2}}=i \quad \text { and so } \sqrt{-4}=\sqrt{{ }^{-1}\left({ }^{+} 4\right)}=\sqrt{i^{2} \bullet 4}=2 i \\
& i^{1}=i \quad i^{2}=-1 \quad i^{3}=-i \quad i^{4}=+1 \quad \text { (pattern repeats) }
\end{aligned}
$$

Absolute Value:

$$
|-3|={ }^{+} 3 \quad \text { and } \quad|+3|={ }^{+} 3 \quad \underset{-3}{\sim+1+1} \underset{0}{1+3}
$$

20 MathManMo

$$
\begin{aligned}
& \text { Unit Conversion } \\
& \text { With } \\
& \text { Unit Cancelling } \\
& \text { And } \\
& \text { Unit Ratio }
\end{aligned}
$$

The Four Basic Unit Conversion Types

There are four basic conversion situations. They are as follow:

1. Converting in the same system (English or metric) and same type (length, area, space volume, liquid volume, time, weight). For instance, we may have English system units of type length, and want to convert to a different English system unit of type length such as miles (mi.) to feet (ft.).

$$
25 \text { pr1. } \times \frac{5280(\mathrm{ft})}{1 \text { ny. }}=132,000 \mathrm{ft} .
$$

2. Converting between systems in the same type. For instance, we may want to convert from metric system units of type volume to an English system unit of type volume such as centimeters (cm) to feet (ft .).

$$
200 \mathrm{sm} \times \frac{1 \mathrm{iv} .}{2.54 \mathrm{sm}} \times \frac{1 \mathrm{tt.} .}{12 \mathrm{jx} .} \approx 6.562 \mathrm{ft} .
$$

3. Converting between different types. For instance, we may want to convert liquid volume type to solid volume type such as gallons (gal.) to cubic feet (cu. ft.). We may want to convert liquid volume gallons (gal.) to weight pounds (lb.).

$$
22 \mathrm{~g} \text { A } \times \frac{8.34(\mathrm{Bb})}{1 \mathrm{~g} \cdot}=183.48 \mathrm{lb} .
$$

4. Compound units. For instance, we may have miles per hour and want to convert to feet per second. Since miles (mi.) and feet (ft.) are type length, and hours (h) and seconds (s) are type time, we must convert one type at a time.

$$
\frac{25 \mathrm{nk} .}{1 \mathrm{pt}} \times \frac{5280 \mathrm{ft}}{1 \text { prt. }} \times \frac{1 \mathrm{~h} \searrow}{60 \mathrm{~min}} \times \frac{1 \mathrm{nqi} \mathrm{\pi}}{60 \mathrm{~s}}=\frac{132,000 \mathrm{ft}}{3600 \mathrm{~s}}=36 . \overline{6} \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Length (distance) Conversion Chart

English And U.S. Customary Units
$12 \mathrm{in} .=1 \mathrm{ft}$.
3 ft . $=1 \mathrm{yd}$.
220 yd . $=1$ fur
$16.5 \mathrm{ft} .=1 \mathrm{rod}$
6076 ft . $=1 \mathrm{nmi}$ or NM
$1760 \mathrm{yd} .=1 \mathrm{mi}$.
5,878,623,400,000 mi. = 1 ly
$92,955,807.3 \mathrm{mi} .=1 \mathrm{AU}$
$3.27 \mathrm{ly}=1 \mathrm{pc}$
Bridge Units
1 in . $=2.54 \mathrm{~cm}$
$1 \mathrm{mi} .=1.6093 \mathrm{~km}$
$.6214 \mathrm{mi} .=1 \mathrm{~km}$

> Metric System Units
> $1,000,000,000,000 \mathrm{pm}=1 \mathrm{~m}$
> $1,000,000,000 \mathrm{~nm}=1 \mathrm{~m}$
> $1,000,000 \mu \mathrm{~m}=1 \mathrm{~m}$
> $1,000 \mathrm{~mm}=1 \mathrm{~m}$
> $100 \mathrm{~cm}=1 \mathrm{~m}$
> $10 \mathrm{dm}=1 \mathrm{~m}$
> $10 \mathrm{~m}=1 \mathrm{dam}$
> $100 \mathrm{~m}=1 \mathrm{hm}$
> $1000 \mathrm{~m}=1 \mathrm{~km}$
> $1,000,000 \mathrm{~m}=1 \mathrm{Mm}$
> $1,000,000,000 \mathrm{~m}=1 \mathrm{Gm}$
> $9,460,700,000,000,000 \mathrm{~m}=1 \mathrm{ly}$
> $149,593,781 \mathrm{~km}=1 \mathrm{AU}$

Abbreviations
in. $=$ inch
ft . $=$ foot
yd. $=$ yard
$\mathrm{mi} .=$ mile

$$
\begin{aligned}
& \mathrm{pm}=\text { picometer } \\
& \mathrm{nm}=\text { nanometer } \\
& \mu \mathrm{m}=\text { micrometer } \\
& \mathrm{mm}=\text { millimeter } \\
& \mathrm{cm}=\text { centimeter } \\
& \mathrm{dm}=\text { decimeter } \\
& \mathrm{m}=\text { meter } \\
& \mathrm{da}=\text { deka/decameter } \\
& \mathrm{hm}=\text { hectometer } \\
& \mathrm{km}=\text { kilometer } \\
& \mathrm{Mm}=\text { megameter } \\
& \mathrm{Gm}=\text { gigameter }
\end{aligned}
$$

In general, the most closely related units of length in the English and metric systems are:
$1 / 32$ inch \leftrightarrow millimeter (very small distances like paper width, bug wing length)
inch \leftrightarrow centimeter (small distances like height of person)
yard \leftrightarrow meter (house and land measurements)
mile \leftrightarrow kilometer (large distances on earth and space)
ly and AU - both systems (huge distances in space, the universe)

Note: There are many other conversions you will see, like $36 \mathrm{in} .=1 \mathrm{yd}$. or $5280 \mathrm{ft} .=1 \mathrm{mi}$. or .6214 mi . $=1 \mathrm{~km}$ and many more. However, if you use unit cancelling it does not matter which one you use. The units will force the numbers to be in the correct place (top or the bottom of the fraction).

(0) MathManMo

Addition Facts Table

Multiplication Facts Table
Perfect Squares To 900
Perfect Cubes To 1000
Perfect Square Roots To 900
Perfect Cube Roots To 1000
Prime Numbers To 100

